

From Wisckey to Bourbon: A Learned Index for Log-Structured Merge Trees

University of Wisconsin – Madison Microsoft Gray Systems Lab

Dai Y, Xu Y, Ganesan A, et al. From wisckey to bourbon: A learned index for log-structured merge trees[C]//Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation. 2020: 155-171.

Data Lookup

Data Lookup is important in systems

How do we perform a lookup given an array of data? Linear search

What if the array is sorted?

Binary search

What if the data is huge?

Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build special data structures for lookups

B-Tree, for example Record the position of the data

What if we know the data beforehand?

Bring Learning to Indexing

Lookups can be faster if we know the distribution

The model $f(\bullet)$ learns the distribution

Learned Index

Time Complexity -0(1) for lookups

Space Complexity -0(1)

Only 2 floating points – slope + intercept

Kraska T, Beutel A, Chi E H, et al. The case for learned index structures[C]//Proceedings of the 2018 international conference on management of data. 2018: 489-504.

Challenges to Learned Indexes

How to efficiently support insertions/updates?

Data distribution

Need re-training, or lowered model accuracy

How to integrate into production systems?

Key-Value Storage Systems

Key-Value Storage Systems

Key-Value stores are widely used in various applications

Flexibility

Scalability

Fast write throughput

LSM-tree (Log-Structured Merge-Tree)

LevelDB

Key-value store based on LSM

2 in-memory tables

7 levels of on-disk SSTables (files)

Update/Insertion procedure

Buffered in MemTables

Merging compaction

From upper to lower levels

No in-place updates to SSTables

Lookup procedure

From upper to lower levels

Positive/Negative internal lookups

Motivation

Take an insight into the latency of each operation of LSM-tree

Learning Guidelines

Learning at SSTable granularity
No need to update models
Models keep a fixed accuracy

Factors to consider before learning:

- 1. Lifetime of SSTables
 - How long a model can be useful
- 2. Number of lookups into SSTables

 How often a model can be useful

Learning Guidelines

1. Lifetime of SSTables How long a model can be useful

Experimental results

Under 15Kops/s and 50% writes

Average lifetime of L0 tables: 10 seconds

Average lifetime of L4 tables: 1 hour

A few very short-lived tables: < 1 second

Learning guideline 1: Favor lower level tables Lower level files live longer

Learning guideline 2: Wait shortly before learning Avoid learning extremely short-lived tables

Learning Guidelines

2. Number of lookups into SSTables How often a model can be useful

Affected by various factors

Depending on workload distribution, load order, etc.

Higher level files may serve more internal lookups

Learning guideline 3: Do not neglect higher level tables Models for them may be more often used

Learning guideline 4: Be workload- and data-aware Number of internal lookups affected by various factors

Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression

From Dataset D

Multiple linear segments $f(\bullet)$

$$\forall (x,y) \in D, |f(x) - y| < error$$

error is specified beforehand

Bourbon set error = 8

Train complexity: O(n)

Typically ~40ms

Inference complexity: $O(\log \#seg)$

Typically <1µs

Xie Q, Pang C, Zhou X, et al. Maximum error-bounded piecewise linear representation for online stream approximation[J]. The VLDB journal, 2014, 23: 915-937.

Bourbon Implementation

Bourbon: build upon WiscKey

WiscKey: key-value separation built upon LeveIDB

(key, value_addr) pair instead of (key, value) in LSM-tree

A separate value log

Why WiscKey?

Help handle large and variable sized values

Constant-sized KV pairs in the LSM-tree

Prediction much easier

Lu L, Pillai T S, Gopalakrishnan H, et al. Wisckey: Separating keys from values in ssd-conscious storage[J]. ACM Transactions on Storage, 2017, 13(1): 1-28.

Bourbon Lookup Path

Modify the lookup procedure of WiscKey

Model exists

No model (baseline)

(b) Lookup via model - detailed steps

Cost-Benefit Analyzer

Goal: Minimize total CPU time

A balance between always-learn and no-learn

Learn!

Estimated benefit

Baseline path lookup time

Model path lookup time

Number of lookups served

Estimated cost Table size

Evaluation

1. Environment

20-core Intel Xeon CPU E5-2660, 160-GB memory, 480-GB SATA SSD

2. Trace

4 synthetic traces (64M) and 2 real-world traces(33M/22M)

3. Workload

Read-only/heavy, range-heavy, write-heavy 10M operations

4. Parameter

16B-sized integer keys, 64B-sized values Error bound = 8

5. Baseline WiscKey

Can Bourbon adapt to different datasets?

Micro benchmark: datasets

4 synthetic datasets: linear, normal, seg1%, and seg10%

2 real-world datasets: AmazonReviews (AR) and OpenStreetMap (OSM)

Uniform random read-only workloads

Dataset	#Data	#Seg	%Seg
Linear	64M	900	0%
Seg1%	64M	640K	1%
Normal	64M	705K	1.1%
Seg10%	64M	6.4M	10%
AR	33M	129K	0.39%
OSM	22M	295K	1.3%

Bourbon performs better with lower number of segments

Reach 1.6× gain for two real-world datasets with 1% segments

Performance with different request distributions?

Micro benchmark: request distribution

Read-only workloads Sequential, zipfian, hotspot, exponential, uniform, and latest

Bourbon improves performance by ~1.6×

Regardless of request distributions

Can Bourbon perform well on real benchmarks?

Micro benchmark: YCSB

6 core workloads on YCSB default dataset Bourbon improves reads without affecting writes

Bourbon's gain holds on real benchmarks
Bourbon improves reads without affecting writes

Is Bourbon beneficial when data is on storage?

Performance on fast storage

Data resides on an Intel Optane SSD 5 YCSB core workloads on YCSB default dataset

Bourbon can still offer benefits when data is on storage

Will be better with emerging storage technologies

Which Portions does Bourbon optimize?

Lookup latency of WiscKey and Bourbon on AR and OSM

Bourbon reduce the indexing portions by up to $2\times$ Interestingly, Bourbon reduce the data-access costs too, by up to $2\times$

File vs. Level Learning

Lookup latency of WiscKey and Bourbon using different granularity

Write-heavy/read-heavy: file model beats level model

Read-only: level model beats file model but gains a little benefit

Workload	Baseline	File model		Level model	
WOIKIOAU	time (s)	Time(s)	% model	Time(s)	% model
Mixed:	82.6	71.5	74.2	95.1	1.5
Write-heavy	62.0	$ (1.16 \times) $	74.2	$ (0.87 \times) $	1.5
Mixed:	89.2	62.05	99.8	74.3	21.4
Read-heavy	09.2	$ (1.44 \times) $	99.6	$(1.2 \times)$	21.4
Read-only	48.4	27.2	100	25.2	100
•		$ (1.78 \times) $		$ (1.92 \times) $	

Effectiveness of Cost-Benefit Analyzer

Learn most/all new tables at low write percentages Reach a better foreground latency than offline learning

Limit learning at a high write percentages

Reduce learning time and have a good foreground latency

Minimal total CPU cost in all scenarios

Error-bound Trade-off and Overhead

Error bound affects both the lookup performance and space overhead

Important hyperparameter in Bourbon

Future research: auto tuning?

Dataset	Space Overheads			
Dataset	MB	%		
Linear	0.02	0.0		
Seg1%	15.38	0.21		
Seg10%	153.6	2.05		
Normal	16.94	0.23		
AR	3.09	0.08		
OSM	7.08	0.26		

(b) Space overheads

Conclusion

Bourbon

Integrates learned indexes into a production LSM system

Beneficial on various workloads

Learning guidelines on how and when to learn

Cost-Benefit Analyzer on whether a learning a worthwhile

How will ML change computer system mechanisms?

Not just policies

Bourbon improves the lookup process with learned indexes

What other mechanisms can ML replace or improve?

Careful study and deep understanding are required

Appendix A

How About Using Neural Network to Learn?

State-Of-The-Art B-Tree

Learned Index

>80,000ns

260ns 13MB 85ns 0.7MB

Appendix B

Current Challenges of Learned Index

Appendix C

A Work-in-Progress Learned Database Proposed by MIT

Appendix D

Other Cases Benefit From Learned Index

Multi-Dim Index Scheduling Bloom-Filter Sorting Range-Filter Tree Hash-Map Nearest **Cache Policy DNA-Search SQL** Query Data Join Neighbor Cubes Optimizer Query