
From WiscKey to Bourbon: A Learned Index

for Log-Structured Merge Trees

University of Wisconsin – Madison

Microsoft Gray Systems Lab

Dai Y, Xu Y, Ganesan A, et al. From wisckey to bourbon: A learned index for log-structured merge trees[C]//Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation. 2020: 155-171.

Data Lookup

Data Lookup is important in systems

How do we perform a lookup given an array of data?

Linear search

What if the array is sorted?

Binary search

What if the data is huge?

3

Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build special data structures for lookups

B-Tree, for example

Record the position of the data

What if we know the data beforehand?

4

Bring Learning to Indexing

Lookups can be faster if we know the distribution

The model 𝑓(•) learns the distribution

Learned Index

Time Complexity – 𝑂(1) for lookups

Space Complexity – 𝑂(1)

Only 2 floating points – slope + intercept

Kraska T, Beutel A, Chi E H, et al. The case for learned index structures[C]//Proceedings of the 2018 international conference on management of

data. 2018: 489-504.
5

Challenges to Learned Indexes

How to efficiently support insertions/updates?

Data distribution

How to integrate into production systems?

Need re-training, or lowered model accuracy

Key-Value Storage Systems

6

Key-Value Storage Systems

Key-Value stores are widely used in various applications

Flexibility

Fast write throughput

Scalability

7

LSM-tree (Log-Structured Merge-Tree)

8

LevelDB

Key-value store based on LSM

2 in-memory tables

Update/Insertion procedure

7 levels of on-disk SSTables (files)

Buffered in MemTables

Merging compaction

From upper to lower levels

No in-place updates to SSTables

Lookup procedure

From upper to lower levels

Positive/Negative internal lookups

9

Motivation

LevelDB Lookup Latency Breakdown

Take an insight into the latency of each operation of LSM-tree

10

Learning Guidelines

Learning at SSTable granularity
No need to update models

Models keep a fixed accuracy

Factors to consider before learning:
1. Lifetime of SSTables

2. Number of lookups into SSTables

How long a model can be useful

How often a model can be useful

11

Learning Guidelines

1. Lifetime of SSTables
How long a model can be useful

Experimental results

Under 15Kops/s and 50% writes

Average lifetime of L0 tables: 10 seconds

Average lifetime of L4 tables: 1 hour

A few very short-lived tables: < 1 second

Learning guideline 1: Favor lower level tables
Lower level files live longer

Learning guideline 2: Wait shortly before learning
Avoid learning extremely short-lived tables

12

Learning Guidelines

2. Number of lookups into SSTables
How often a model can be useful

Affected by various factors

Depending on workload distribution, load order, etc.

Higher level files may serve more internal lookups

Learning guideline 3: Do not neglect higher level tables
Models for them may be more often used

Learning guideline 4: Be workload- and data-aware
Number of internal lookups affected by various factors

13

Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression

From Dataset 𝐷

Multiple linear segments 𝑓(•)

∀(𝑥, 𝑦) ∈ 𝐷, |𝑓(𝑥) − 𝑦| < 𝑒𝑟𝑟𝑜𝑟

error is specified beforehand

Bourbon set error = 8

Train complexity: 𝑂(𝑛)

Typically ~40ms

Inference complexity: 𝑂(log #𝑠𝑒𝑔)

Typically <1μs

14

Xie Q, Pang C, Zhou X, et al. Maximum error-bounded piecewise linear representation for online stream approximation[J]. The VLDB journal,

2014, 23: 915-937.

Bourbon Implementation

Bourbon: build upon WiscKey

WiscKey: key-value separation built upon LevelDB

(key, value_addr) pair instead of (key, value) in LSM-tree

A separate value log

Why WiscKey?

Help handle large and variable sized values

Constant-sized KV pairs in the LSM-tree

Prediction much easier

Lu L, Pillai T S, Gopalakrishnan H, et al. Wisckey: Separating keys from values in ssd-conscious storage[J]. ACM Transactions on Storage, 2017,

13(1): 1-28.
15

Bourbon Lookup Path

Modify the lookup procedure of WiscKey

Model exists

No model (baseline)

16

Cost-Benefit Analyzer

Goal: Minimize total CPU time

A balance between always-learn and no-learn

17

Evaluation

1. Environment

20-core Intel Xeon CPU E5-2660, 160-GB memory, 480-GB SATA SSD

2. Trace

4 synthetic traces (64M) and 2 real-world traces(33M/22M)

3. Workload

Read-only/heavy, range-heavy, write-heavy

10M operations

4. Parameter

16B-sized integer keys, 64B-sized values

Error bound = 8

5. Baseline

WiscKey

19

Can Bourbon adapt to different datasets?

Micro benchmark: datasets

4 synthetic datasets: linear, normal, seg1%, and seg10%

2 real-world datasets: AmazonReviews (AR) and OpenStreetMap (OSM)

Uniform random read-only workloads

Bourbon performs better with lower number of segments

Reach 1.6× gain for two real-world datasets with 1% segments

20

Performance with different request distributions?

Micro benchmark: request distribution

Read-only workloads

Sequential, zipfian, hotspot, exponential, uniform, and latest

Bourbon improves performance by ~1.6×

Regardless of request distributions

21

Can Bourbon perform well on real benchmarks?

Micro benchmark: YCSB

6 core workloads on YCSB default dataset

Bourbon improves reads without affecting writes

Bourbon’s gain holds on real benchmarks

Bourbon improves reads without affecting writes

22

Is Bourbon beneficial when data is on storage?

Performance on fast storage

Data resides on an Intel Optane SSD

5 YCSB core workloads on YCSB default dataset

Bourbon can still offer benefits when data is on storage

Will be better with emerging storage technologies

23

Which Portions does Bourbon optimize?

Lookup latency of WiscKey and Bourbon on AR and OSM

Bourbon reduce the indexing portions by up to 2×

Interestingly, Bourbon reduce the data-access costs too, by up to 2×

24

File vs. Level Learning

Lookup latency of WiscKey and Bourbon using different granularity

Write-heavy/read-heavy: file model beats level model

Read-only: level model beats file model but gains a little benefit

25

Effectiveness of Cost-Benefit Analyzer

Learn most/all new tables at low write percentages
Reach a better foreground latency than offline learning

Limit learning at a high write percentages
Reduce learning time and have a good foreground latency

Minimal total CPU cost in all scenarios

26

Error-bound Trade-off and Overhead

Error bound affects both the lookup performance and space overhead

Important hyperparameter in Bourbon

Future research: auto tuning?

27

Conclusion

Bourbon
Integrates learned indexes into a production LSM system

Beneficial on various workloads

Learning guidelines on how and when to learn

Cost-Benefit Analyzer on whether a learning a worthwhile

How will ML change computer system mechanisms?
Not just policies

Bourbon improves the lookup process with learned indexes

What other mechanisms can ML replace or improve?

Careful study and deep understanding are required

28

Q & A

29

Appendix A

How About Using Neural Network to Learn?

30

State-Of-The-Art

B-Tree
Tensorflow

260ns>80,000ns

Learned Index

85ns

13MB 0.7MB

Appendix B

Current Challenges of Learned Index

31

Appendix C

A Work-in-Progress Learned Database Proposed by MIT

33

Appendix D

Other Cases Benefit From Learned Index

33

