suUsenix

ASSOCIATION W[S(;ONSIN m

THE ADVANCED
COMPUTING SYSTEMS

From WiscKey to Bourbon: A Learned Index
for Log-Structured Merge Trees

University of Wisconsin — Madison
Microsoft Gray Systems Lab

Dai Y, Xu Y, Ganesan A, et al. From wisckey to bourbon: A learned index for log-structured merge trees[C]//Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation. 2020: 155-171.

Data Lookup

Data Lookup is important in systems

How do we perform a lookup given an array of data?
Linear search

What if the array is sorted?
Binary search

What if the data is huge?

4

Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build special data structures for lookups

B-Tree, for example
Record the position of the data

What if we know the data beforehand?

(a) B-Tree Index (b) Learned Index
3 (5 K
ey Key
e [s el i i
J \ /\ MOdel
1 2 3| a 5167 BTree (e.g., NN)
. o [o | o [o | o] P OS\] pos

d, d, ds d, dg dg d

pos -0 pos + pagezise pos - min_err pos + max_er

Bring Learning to Indexing

Lookups can be faster if we know the distribution
The model f () learns the distribution
Learned Index

Time Complexity — 0(1) for lookups

Space Complexity — 0(1)

Only 2 floating points — slope + intercept

Key
4

[x =100 -> f(x) = 0
4

Challenges to Learned Indexes

How to efficiently support insertions/updates?

Data distribution
Need re-training, or lowered model accuracy

How to integrate into production systems?
Key-Value Storage Systems

101 103

350

400

Key-Value Storage Systems

Key-Value stores are widely used in various applications

Flexibility

Scalability

Fast write throughput

‘ LEVELDB <+ RocksDB @ S;’?agg?e
cassandra

LiecEAn IsTORI QTiDB (©) Ascosoos

LSM-tree (Log-Structured Merge-Tree)

Write Key-Value

—> | MemTable | emp | IMMutable Main
MemTable
Memory
LO &J Disk ~ SSTable
SSTable (0,1) data block 1
data block n
index block
bloom filter
footer

SSTable (n,1) SSTable (n,2) SSTable (n,3) -+ SSTable (n,m)

LevelDB

Key-value store based on LSM

2 in-memory tables 5 Z:;T:'e
7 levels of on-disk SSTables (files) Memory

Update/lnsertion procedure
Buffered in MemTables LO (8
Merging compaction L1 (1 K K
From upper to lower levels L2 (1048 ()) [j
No in-place updates to SSTables L3 (1 [}[] [:]

Lookup procedure e
From upper to lower levels

Positive/Negative internal lookups

Motivation

Take an insight into the latency of each operation of LSM-tree

@ FindFiles ©6) SearchDB FindFiles m® [oadIB+FB Other
> Q SearchIB @) SearchFB (7) ReadValue SearchIB+SearchDB m® LoadDB [
2 | memtable immutable IB FB DB SearchFB 3 ReadValue
o memtable '\ n : ‘ .
£ @ LoadIB+FB 3us 13.1us 93 pus 3.8us
"""""""""""""""""""""""""""""" N @ 100 7777 7777 777
T // - /’/,/,
index block % ; 30 | d”f W (i g B 5y e
4] didate-1 : S ata | N ‘ S5,
L8, emdduel (M TR 3 8 6o | access— ‘ | ﬁ
s 8 L uEimp data-block | @ S ~E \ :
@ Soc ') ;
a L L L D o 40 . | ~ N\ |
: candidate-3"- data-block 2 5 56 index O\ vl
' - & - -Ing ' '
L, O - O - ; i .
. [data-block n 0
(a) Level DB InMemory SATA NVMe Optane

LevelDB Lookup Latency Breakdown

Learning Guidelines

Learning at SSTable granularity
No need to update models

Models keep a fixed accuracy

Factors to consider before learning:

1. Lifetime of SSTables

How long a model can be useful

2. Number of lookups into SSTables

How often a model can be useful

LO |
L1 |
12 |

Learning Guidelines

1. Lifetime of SSTables ’
LO J |
How long a model can be useful —
. L1
Experimental results g —
Under 15Kops/s and 50% writes - O I O D
Average lifetime of LO tables: 10 seconds R,
Average lifetime of L4 tables: 1 hour %,{}4 —
A few very short-lived tables: < 1 second Su0tE T
= 10" f
Learning guideline 1: Favor lower level tables fff’:j;ﬂ o
Lower level files live longer < oo o100
Write percentage (%)

Learning guideline 2: Wait shortly before learning
Avoid learning extremely short-lived tables

Learning Guidelines

2. Number of lookups into SSTables

LO
How often a model can be useful

L1

Affected by various factors

Depending on workload distribution, load order, etc. - T OO
Higher level files may serve more internal lookups

. . . . 2 14 —— L2 LO —=
Learning guideline 3: Do not neglect higher level tables % ¢tz
Models for them may be more often used MR HE

20|

Learning guideline 4: Be workload- and data-aware s
Number of internal lookups affected by various factors Z ™ Write percentage (%)

Write percentage (%)

Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression
From Dataset D
Multiple linear segments f (o)
V(x,y) €D,|f(x) — y| < error
error IS specified beforehand
Bourbon set error = 8

Train complexity: O(n)
Typically ~40ms

Inference complexity: O(log #seg)
Typically <1us

500 +

400 +

300 4

200

100 +

Ve

/

0

250

500 750

1000 1250 1500 1750

Bourbon Implementation

Bourbon: build upon WiscKey

WiscKey: key-value separation built upon LevelDB
(key, value_addr) pair instead of (key, value) in LSM-tree
A separate value log

Why WiscKey?

Help handle large and variable sized values

value-log

Constant-sized KV pairs in the LSM-tree ctable ';2’; : s

Prediction much easier] e b
(b) WiscKey

Bourbon Lookup Path

Modify the lookup procedure of WiscKey
Model exists
No model (baseline)

@ FindFiles @ ModelLookup @Lo cateKey

- a
: (@)LoadIB+FB k— DT
g @Sea;'cf?FB Model
\
B IB FB <pos, irror‘)
memtables A — <offset, len>
O] S
@Load(%unk 3
O 3
O S
O
~
2 value-log T

(b) Lookup via model - detailed steps

Cost-Benefit Analyzer

Goal: Minimize total CPU time
A balance between always-learn and no-learn

/Estimated cost

I
Learn! Table size

/Estimated benefit h

Baseline path lookup time _

Model path lookup time
_ Number of lookups served/

Evaluation

1. Environment
20-core Intel Xeon CPU E5-2660, 160-GB memory, 480-GB SATA SSD

2. Trace
4 synthetic traces (64M) and 2 real-world traces(33M/22M)

3. Workload
Read-only/heavy, range-heavy, write-heavy
10M operations

4. Parameter
16B-sized integer keys, 64B-sized values

=

Position
(=
(W]

Error bound = 8

| / / A
51 : | e
, _ s / |/ ”

o]

Key Key Keay Key

5. Baseline
WiscKey

(a) Linear (b) Segl0% (¢) Normal (d) O5M

Can Bourbon adapt to different datasets?

Micro benchmark: datasets

4 synthetic datasets: linear, normal, seg1%, and seg10%
2 real-world datasets: AmazonReviews (AR) and OpenStreetMap (OSM)

Uniform random read-only workloads

m

Linear

Seg1% 64M
Normal 64M
Seg10% 64M
AR 33M
OSM 22M

640K
705K
6.4M
129K
295K

0%
1%
1.1%
10%
0.39%
1.3%

Average latency (us)

O = N W s O
[T B |

B WiscKey Z Bourbon

1 1.78x 1.43x 1.35x 123x 1.61x 1.61x

NN

11

Llnear Seg1% NormalSeg10%
Dataset

Bourbon performs better with lower number of segments
Reach 1.6 gain for two real-world datasets with 1% segments

Performance with different request distributions?

Micro benchmark: request distribution

Read-only workloads
Sequential, zipfian, hotspot, exponential, uniform, and latest

I WiscKey Bourbon
16x 1.6x 15x 1.56x 15x 16x 1.7x 1.8x 1.5x 1.6x 1.6x 1.6x

11113

AR OSM AR OSM AR OSM AR OSM AR OSM AR OSM
Sequential Zipfian HotSpot Exponential Uniform Latest

Average latency (us)
onN A O

Bourbon improves performance by ~1.6X%
Regardless of request distributions

Can Bourbon perform well on real benchmarks?

Micro benchmark: YCSB

6 core workloads on YCSB default dataset
Bourbon improves reads without affecting writes

"g’ B WiscKey /. Bourbon "g

% 1.06x 1.38x 1.64x 1.34x 1.18x g 1.17x%
S 400- S 40-

X 300 X 30+

5 200 - 5 20+

2 100- 210+

gi 0 Zz Z Z g) 0 Z

o A:write-heavy B:read-heavy C:read-only D:read-heavy F:write-heavy O E:range-heavy
c o

- -

Bourbon’s gain holds on real benchmarks
Bourbon improves reads without affecting writes

|s Bourbon beneficial when data is on storage?

Performance on fast storage

Data resides on an Intel Optane SSD
5 YCSB core workloads on YCSB default dataset

A:write- heavy B:read- heavy C:read-only D:read-heavy F:write-heavy

YCSB Workload

) B WiscKey /] Bourbon

. 1.05x 1.19x 1.33x 1.16x 1.06x
I

S 400 -

X 300+

5 200-

£ 100-

S 7 /. 7
=3

(@)

c

=

Bourbon can still offer benefits when data is on storage
Will be better with emerging storage technologies

Which Portions does Bourbon optimize?

Lookup latency of WiscKey and Bourbon on AR and OSM

Bourbon reduce the indexing portions by up to 2x
Interestingly, Bourbon reduce the data-access costs too, by up to 2x

FindFiles 1 Search ® LoadData = Other 4
LoadIB+FB =1 SearchFB &0 ReadValue [
g 4 | /7 7
=3
QO . ~
= i :ZX
gb I "2.4)(
< 0

WiscKey Bourbon WiscKey Bourbon
AR OSM

File vs. Level Learning

Lookup latency of WiscKey and Bourbon using different granularity

Write-heavy/read-heavy: file model beats level model
Read-only: level model beats file model but gains a little benefit

Workload Baseline File model Level model
time (s) | Time(s) | % model | Time(s) | % model

er\i/tI:—{ESz:wy 82.6 (1 .7116.5><) 74.2 (0.9857. lx) 1.5

ReTr}f;vy 89.2 (fifi) 298 (17.121'1) 21.4

Readronly | 484 |55 1 100|501 100

Effectiveness of Cost-Benefit Analyzer

Learn most/all new tables at low write percentages
Reach a better foreground latency than offline learning

Limit learning at a high write percentages
Reduce learning time and have a good foreground latency

Minimal total CPU cost in all scenarios

M WiscKey X Always M Learning
/. Offline W CBA

500 -
400 -

2 300

@

£ 200-

"~ 100-
0- N
10% 50%
Write Percentage

Error-bound Trade-off and Overhead

Error bound affects both the lookup performance and space overhead
Important hyperparameter in Bourbon
Future research: auto tuning?

latency —-

"‘E i Space (MB) —@— | “ gg Dataset S;;zj[(;a Overh%ads
7 285 k Sl Bl Linear | 0.02 | 0.0
g 28f " / - Segl% | 1538 | 0.21
g 275 /' o5 Segl0%| 153.6 | 2.05
S 57 R s B Normal | 16.94 | 0.23
2 e B - o), E AR | 3.09 | 008
2 8 16 2 = OSM 7.08 0.26

4
Error Bound (3)

head
(a) Error-bound tradeoff (b) Space overheads

Conclusion

Bourbon
Integrates learned indexes into a production LSM system

Beneficial on various workloads
Learning guidelines on how and when to learn
Cost-Benefit Analyzer on whether a learning a worthwhile

How will ML change computer system mechanisms?
Not just policies
Bourbon improves the lookup process with learned indexes
What other mechanisms can ML replace or improve?
Careful study and deep understanding are required

Appendix A

How About Using Neural Network to Learn”?

|

L

State-Of-The-Art

Tensorflow B-Tree
>80,000ns 260ns
13MB

L earned Index

85ns
0.7MB

Appendix B

Current Challenges of Learned Index

Traditional model architectures Frameworks are not designed
do no’r work for nano-second execution

Overfitting can be good ML+System Co-Design

! Level 1 Level 2 Level 3 Main
\/ IL\/\/J\{ SN =

underfitting desired mg m

desired

Appendix C
A Work-in-Progress Learned Database Proposed by MIT

Query Optimization Data Access
- Cardinality Estimation - Compression

- Cost Model - Storage layout
- Join) - Indexes
Ordering iy 3
L A‘A -

- Data Cubes

- Sorting
- Joins Q -AQP
- Aggregation - Machine

- Scheduling Learning
Query Execution

A B G

Data Harlav\'l'are Workload

@ﬂ% DSAIL 2* Microsoft Google (I@

MITCSAIL Data Systems and Al Lab

Appendix D

Other Cases Benefit From Learned Index

Tree Multi-Dim Index Bloom-Filter ~ Sorting Scheduling Range-Filter Hash-Map

AL Vil |t =W

Data DNA-Search SQL Query Cache Policy Join Nearest
Cubes Optimizer Neighbor

e =2 Mg)

